Reactions Between Atmospheric Water and Phosphate Glass Surfaces

Brad C. Tischendorf* and Richard K. Brow
University of Missouri-Rolla

Todd M. Alam
Sandia National Laboratory

2003 GOMD Meeting
Oct 14, 2003
Corning NY
Contradictory Results

Aqueous Corrosion

Humid Weathering
Outline of Discussion

Can we see structural differences in glasses of similar phosphate compositions before and after weathering that allow us to characterize the structural changes and differences?

Glass compositions and weathering conditions

- 31P MAS characterization
- 31P-1H cp experiments
- 27Al MAS
- 27Al-31P REDOR
- Conclusions
Glass Compositions

- Alumino-metaphosphate glasses have the general composition $30R_{2}O \cdot 10Al_{2}O_{3} \cdot 60P_{2}O_{5}$.

- Two series III glasses were also prepared with increased $Al_{2}O_{3}$.

<table>
<thead>
<tr>
<th></th>
<th>K_2O</th>
<th>BaO</th>
<th>MgO</th>
<th>$Al_{2}O_{3}$</th>
<th>P_2O_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAP</td>
<td>30</td>
<td></td>
<td></td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>KBAP</td>
<td>15</td>
<td>15</td>
<td></td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>KMAP</td>
<td>15</td>
<td></td>
<td>15</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>45-10-45</td>
<td>45</td>
<td></td>
<td></td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>40-20-40</td>
<td>40</td>
<td></td>
<td></td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>
Weathering Conditions

- Annealed glass was ground and the 45-63µm fraction collected.

- Small amounts of powder were placed into teflon petri dishes and weathered at 50°C and 80%RH.

- Samples were removed after 0, 1, and 7 days and the change in structure was studied via NMR.
31P MAS Data

- All three metaphosphate glasses appear to have nearly the same structure consisting entirely of Q^2 units.
31P MAS Data after Weathering for 7 Days

- KAP and KMAP glasses show significant changes in the phosphate network after 1 week of corrosion.
- KBAP does not appear to show the same reactivity.

50°C / 80% RH

Q^1(OH) Q^2(OH) Q^0(OH) Q^2

ppm
31P-1H CP Experiments

- All of the new phosphate species that show up in the MAS spectra correlated to 1H.
- While 1H is present in the KBAP glass, it has no obvious effect on the phosphate network.
Series III 31P MAS Spectra

- Show the transition from Entirely Q^2 to entirely Q^1 units as we increase the Al_2O_3 fraction at the expense of P_2O_5.
Series III 31P MAS after weathering 1 Day

- Time constraints only allowed 1 day of corrosion.
- See increasing reaction rates as approach the metaphosphate composition.
- 2 variables
Series III CP Experiments

50°C / 80%RH

KAP (40-20-40)

KAP (45-10-45)

KAP (30-10-60)

- Again all new species are correlated to 1H.
- There does appear to be water present in the 40-20-40 glass, just not affecting the structure.
27Al MAS Data

<table>
<thead>
<tr>
<th>Glass</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMAP</td>
<td>0.88</td>
<td>0.11</td>
<td>0.01</td>
<td>5.87</td>
</tr>
<tr>
<td>KBAP</td>
<td>0.88</td>
<td>0.11</td>
<td>0.01</td>
<td>5.87</td>
</tr>
<tr>
<td>KAP</td>
<td>0.94</td>
<td>0.05</td>
<td>0.01</td>
<td>5.93</td>
</tr>
<tr>
<td>45-10-45</td>
<td>0.42</td>
<td>0.33</td>
<td>0.25</td>
<td>5.17</td>
</tr>
<tr>
<td>40-20-40</td>
<td>0.10</td>
<td>0.22</td>
<td>0.68</td>
<td>4.42</td>
</tr>
</tbody>
</table>

![Graph showing 27Al MAS data for different glasses](image-url)
Structural Differences

- Initial 31P and 27Al data show little structural differences to account for the difference in reactivity between KMAP and KBAP glasses.

- Looking for other methods to probe the structural order and find differences.

- Al is known to be a stabilizing species, can we probe Al-P connectivities?
Explanation of Redor Measurements

\[\frac{\Delta S}{S_0} = \frac{f}{I(I+1)\pi^2} (NT_r)^2 M_2^{IS} \]

\[a = \frac{f}{I(I+1)\pi^2} M_2^{IS} \]

GOMD Oct 14, 2003
Redor Results

- The second dipole moment is based on the Al coordination with Al-P distance.
- 1-D data shows that KMAP-KBAP have same coordination distribution.

<table>
<thead>
<tr>
<th>Glass</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMAP</td>
<td>0.88</td>
<td>0.11</td>
<td>0.01</td>
<td>5.87</td>
</tr>
<tr>
<td>KBAP</td>
<td>0.88</td>
<td>0.11</td>
<td>0.01</td>
<td>5.87</td>
</tr>
<tr>
<td>KAP</td>
<td>0.94</td>
<td>0.05</td>
<td>0.01</td>
<td>5.93</td>
</tr>
<tr>
<td>45-10-45</td>
<td>0.42</td>
<td>0.33</td>
<td>0.25</td>
<td>5.17</td>
</tr>
<tr>
<td>40-20-40</td>
<td>0.10</td>
<td>0.22</td>
<td>0.68</td>
<td>4.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glass</th>
<th>M² IS (×10⁶ sec⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMAP</td>
<td>4.5</td>
</tr>
<tr>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>4.42</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- 31P MAS NMR provides details about the attack of water on the phosphate glass structure.
 - Including the differences in reactivity of different glass compositions.
- 31P and 27Al NMR, however, show little structural difference in the glasses prior to weathering.
- 27Al - 31P Redor measurements appears to show small differences in Al-P coordination environments in the different glass species.
Acknowledgements

- This work is funded by Lawrence Livermore National Laboratory. Work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

- Brian Cherry of SNL

- Joe Hayden of Schott Glass Technologies